Impacts of a nanosized ceria additive on diesel engine emissions of particulate and gaseous pollutants.
نویسندگان
چکیده
Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NO(x) (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NO(x), our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions.
منابع مشابه
Improving the combustion and emission characteristics of ISM 370 diesel engine by hydrogen addition and redesigning injection strategy
Hydrogen fuel is the cleanest fuel available. This fuel can be used as an additive in the diesel engine. Diesel engines have the advantages of strong power, high thermal efficiency and low fuel costs. There have been extensive studies on the use of hydrogen fuel in diesel engines in recent years. However, the simultaneous effect of using gaseous hydrogen fuel and changing injection strategy nee...
متن کاملCharacteristics of fish oil biodiesel with the impact of diesel fuel addition on a CI engine
The present study focuses on the optimization in the use of non-petroleum fuel derived from waste fish oil fuels, as a replacement for petroleum diesel fuel for compression ignition engine. The study comprises of comparison between results of fish oil biodiesel-diesel blends on a compression ignition engine. Fuel properties such as viscosity, density, heat value of fuel, cetane number and a fla...
متن کاملOxygenated Diesel: Emissions and Performance Characteristics of Ethanol-Diesel Blends in CI Engines
Diesel engines are major contributors of various types of air polluting exhaust gasses such as Particulate Matter (PM), Carbon monoxide (CO), Oxides of Nitrogen (NOx), Sulfur, and other harmful compounds. It has been shown that formation of these air pollutants can be significantly reduced by blending oxygenates into the base diesel. Ethanol blended diesel (e-diesel) is a cleaner burning altern...
متن کاملEffect of water/fuel emulsions and a cerium-based combustion improver additive on HD and LD diesel exhaust emissions.
One of the major technological challenges for the transport sector is to cut emissions of particulate matter (PM) and nitrogen oxides (NOx) simultaneously from diesel vehicles to meet future emission standards and to reduce their contribution to the pollution of ambient air. Installation of particle filters in all existing diesel vehicles (for new vehicles, the feasibility is proven) is an effi...
متن کاملNumerical study of the effect of fuel injection timing on the ignition delay, performance parameters and exhaust emission of gas/dual fuel diesel engine using Computational Fluid Dynamics
Today, due to the various usage of compression ignition engines in urban transportation, as well as the need to reduce exhaust emissions and control fuel consumption, the use of alternative fuels has become common in diesel engines. Gaseous fuel is one of the most common alternative fuels that can be used in diesel engines. The utilization of alternative fuels in compression ignition engines re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 47 22 شماره
صفحات -
تاریخ انتشار 2013